Executive summary. Many investors, whether individual or institutional, hold a diversified bond portfolio primarily to mitigate the volatility inherent in stocks or other risky assets. However, with yields near historic lows and higher-than-normal volatility in bonds, more investors view the bond market as abnormally risky. This view began to gain traction in early 2010 and has been bolstered in the first half of 2013 as the U.S. Federal Reserve’s quantitative easing program has continued while economic data have modestly improved. Indeed, the preponderance of thought is that if and when interest rates rise, the fixed income portion of an investor’s aggregate portfolio may face volatility and loss. The term “bond bubble” was coined to describe this fear and is now common in the financial media.

Given many investors’ concerns, this update of our earlier paper on this topic (Philips, Kinniry, and Walker, 2010) offers insight on the risk of higher interest rates to a broadly diversified bond portfolio.

1 We recognize that investors may also hold bonds for the income they produce as part of a portfolio spending plan. However, for this discussion we elected to focus on the diversified total-return investor.
In this paper, when we refer to “bonds” we are concerned only with a broadly diversified, investment-grade bond portfolio. Investment-grade bonds are those that have a credit rating the equivalent of at least Baa3 or above by Moody’s Investors Service. Portfolios focused on corporate bonds (including high-yield bonds) or laddered portfolios of individual bonds can face additional risks such as credit risk (widening spreads and/or default) for corporate bonds, or liquidity and concentration risk for smaller laddered portfolios. For a more detailed discussion on the role of individual bonds versus bond funds, refer to Bennyhoff (2009) and Donaldson (2009).

Important: The projections or other information generated by the Vanguard Capital Markets Model™ regarding the likelihood of various investment outcomes are hypothetical in nature, do not reflect actual investment results, and are not guarantees of future results. VCMM results will vary with each use and over time. The VCMM projections are based on a statistical analysis of historical data. The asset-return distributions shown in this paper are drawn from 10,000 VCMM simulations based on market data and other information available as of December 30, 2012. Future returns may behave differently from the historical patterns captured in the VCMM. More important, the VCMM may be underestimating extreme negative scenarios unobserved in the historical period on which the model estimation is based. For more information on the VCMM, please see the Appendix.

Notes about risk and performance data: All investments, including a portfolio’s current and future holdings, are subject to risk, including the possible loss of the money you invest. Past performance is no guarantee of future returns. The performance of an index is not an exact representation of any particular investment, as you cannot invest directly in an index. Bond funds are subject to the risk that an issuer will fail to make payments on time, and that bond prices will decline because of rising interest rates or negative perceptions of an issuer’s ability to make payments. High-yield bonds generally have medium- and lower-range credit-quality ratings and are therefore subject to a higher level of credit risk than bonds with higher credit-quality ratings. While U.S. Treasury or government-agency securities provide substantial protection against credit risk, they do not protect investors against price changes due to changing interest rates. U.S. government backing of Treasury or agency securities applies only to the underlying securities and does not prevent price fluctuations. There are additional risks associated with foreign investing, including the possibility that returns will be hurt by a decline in the value of foreign currencies or by unfavourable developments in a particular country or region.

2 In this paper, when we refer to “bonds” we are concerned only with a broadly diversified, investment-grade bond portfolio. Investment-grade bonds are those that have a credit rating the equivalent of at least Baa3 or above by Moody’s Investors Service. Portfolios focused on corporate bonds (including high-yield bonds) or laddered portfolios of individual bonds can face additional risks such as credit risk (widening spreads and/or default) for corporate bonds, or liquidity and concentration risk for smaller laddered portfolios. For a more detailed discussion on the role of individual bonds versus bond funds, refer to Bennyhoff (2009) and Donaldson (2009).
Today’s low level of interest rates has fueled the belief that bonds are the main source of risk in a balanced portfolio. There is a strong probability that over the next ten years, the return of broadly diversified investment-grade bonds will underperform their average of the last ten years (+4.66% through May 31, 2013, based on the Barclays U.S. Aggregate Bond Index), and there is a higher-than-normal possibility of bonds realizing a negative return in the short term. That said, Vanguard believes it is worth reminding investors that a bear market in bonds is unlikely to be the same as a bear market in equities in terms of potential downside loss. Despite current conditions and the higher-than-normal chance of bond losses, we contend that bonds are likely to remain one of the best diversifiers of equity market risk and that they will likely provide downside protection to balanced investors over the long term.

Math drives bond returns

High-quality bonds are unique compared with other investments such as equities, by virtue of the bonds’ well-defined return stream as a result of their highly certain income stream. Because of this dependence on income, bonds are uniquely affected by movements in interest rates. Rising rates lead to higher yields and lower prices (that is, capital losses) and vice versa. The sensitivity of a bond’s price to changes in interest rates is measured by duration, a concept explored in Bennyhoff and Zilbering (2010).

Because duration is the common metric for evaluating risk between two comparable fixed income investments, a rule of thumb is often used to generalize the relationship between interest rate movements and performance: That is, if interest rates increase 1 percentage point (100 basis points), a bond’s (or bond fund’s) value will drop by approximately the bond’s (or the fund’s weighted average) duration. Of course, this formula presumes an instantaneous, parallel shift in the yield curve, a shift that, historically, has occurred only rarely (Davis et al., 2010). This is because the factors driving increases in near-term rates (monetary policy set forth by the Federal Reserve) and long-term rates (inflation expectations) are quite different. However, for ease of presentation we presume a parallel shift in yields. In addition, we assume that all income received is reinvested.

As of May 31, 2013, the yield on the Barclays U.S. Aggregate Bond Index stood at 2.1%, with a weighted average duration of 5.5 years. To use a simplistic example, a 1 percentage point rise in yields during a 12-month period would lead to a new yield of 3.1% and a capital loss of –5.5%. All else being equal, the expected total return during that period would be the average of the starting and ending yields—2.6% plus the capital loss associated with the rising yields (–5.5%), or –2.9%. Following the 1-percentage-point rise in rates, the initial expected return for year two would be 3.1%, instead of 2.1%. Over a two-year holding period, an investor would roughly break even in this example.

But what happens if interest rates unexpectedly rise by a significant amount, say 3 percentage points, across the yield curve? Such a jump has happened only twice in the United States, once in 1980 and again in 1981, as the Federal Reserve drove interest rates higher in an effort to combat inflation. But in relative terms historically, if interest rates jumped from 2.1% to 5.1%, that rise would constitute a 143% change in rates. A change of this magnitude has never occurred in the United States, but it is not impossible, given current bond market conditions. Figure 1, on page 4, demonstrates the hypothetical impact of a 300-basis-point increase in interest rates on an investment linked to the broad U.S. bond market. As expected, in year one, the price decline would be significant, potentially leading to the second-worst 12-month return ever for U.S. bond investors (historically, the actual worst 12-month return for U.S. bond investors was –13.9% for the 12 months ended September 30, 1974).

3 In 1994 interest rates rose from 3% to 6%, a 100% increase. If we assume a 3% increase in rates from current levels (2.1% as of May 31, 2013, for the Barclays U.S. Aggregate Bond Index), that would constitute a 143% increase, which is relatively larger than the 100% increase in 1994.
For a total-return investor, the new yield level starting in year two (see Figure 1) would perhaps be of greater importance. Following the initial year of pain, that same investor who “stayed the course” would expect a 5.1% return going forward, all else being equal. Three years following the hypothetically second-worst bond market return ever, the diversified bond investor would be close to breaking even, simply by reinvesting interest distributions. It may be tempting to view this analysis as an endorsement for active fixed income investing in a rising interest rate environment. After all, why not use an active strategy in the hope that it will avoid the initial year of pain altogether by reducing the fund’s interest rate sensitivity before rates rise? Although such a strategy may seem conceptually appealing, in practice few active fixed income managers have consistently demonstrated foresight in timing interest rate movements. Vanguard research has shown that in a majority of rising-rate periods, active managers, on average, failed to outperform their relevant benchmarks.4

Current interest rates tell us nothing about where they’re headed

The three yield curves in Figure 2 illustrate why concern grew in 2010 about the potential for a “bubble” and losses in bonds. The blue yield curve represents spot (actual point-in-time) U.S. bond yields on May 28, 2010, while the red curve shows the three-year forward curve on May 28, 2010. This curve represents what the market expected the yield curve to look like three years hence, based on information available on May 28, 2010. Clearly, market expectations were that interest rates would rise across the entire curve, with the largest increases at the short and intermediate portions of the curve.6 Hindsight reveals, of course, that interest rates did not evolve as expected in 2010. In practice, interest rate movements rarely conform to expectations, because the factors that drive interest rate changes are notoriously difficult to accurately predict with consistency. An investor in 2010 who shortened the duration of his or her fixed income portfolio based on expectations of rising interest rates and the imminent bursting of the “bond bubble” lost significant income and capital gains as interest rates continued to fall into 2013.

Figure 2 thus underscores that the current level of interest rates cannot be considered to presage future changes in rates: Just because interest rates are low doesn’t mean they can’t go lower or that they must go higher. On May 28, 2010, the yield of the 10-year Treasury note was 3.31%, near the

4 All illustrations and bond math examples in this paper are in nominal, not real, terms.
5 For more on the performance of active fixed income funds in rising rate environments, see Philips and Walker (2011).
6 For more on factors that drive the evolution of the yield curve, see Davis et al. (2010).
lowest level that most of today’s investors had ever seen in their lifetime (the last time the 10-year Treasury yield was this low was in August 1957). This fact likely contributed to the market’s expectation that interest rates would increase. Given that predicting interest rate movements is so difficult and because the level of rates reveals nothing about their future direction, we encourage investors to avoid the temptation to stray from a broadly diversified fixed income exposure. Indeed, we would argue that periods of heightened economic uncertainty require greater, not less, fixed income diversification, similar to what an investor might achieve by shortening the duration of his or her portfolio to avoid losses in bonds if interest rates rise.

Putting a ‘bond bear market’ in context

When evaluating the potential risks in the bond market, it is critical to remember why bonds are an integral part of a well-thought-out asset allocation plan: to diversify the risk inherent in the equity markets. Simply put, although the fears of rising interest rates may be legitimate, as Figure 3, on page 6, shows, a potential bear market in bonds can be dramatically different from a bear market in stocks (or other risky assets). In fact, unlike stocks, where the common definition of a bear market is a decline of at least 20% in prices, to most investors a bear market in bonds is simply thought of as a period of negative returns. And to date (as of May 31, 2013), the broad U.S. bond market has never experienced a –20% return. Indeed, it’s the magnitude of returns that is the key differentiator between bad periods for bonds versus stocks. For example, the worst 12-month period for U.S. bonds since 1926 (the 12 months ended September 1974) saw a decline of –13.9%, while the worst 12-month period for U.S. stocks (the 12 months ended June 1932) returned –67.6%. In another example, the worst calendar year for the broad bond market since the inception of the Barclays U.S. Aggregate Bond Index was 1994, in which, owing to an unexpected upward shift in interest rates, the bond market dropped –2.9% (in 1995, following the decline, the bond market surged +18.5%). Contrast this to the experience of stock investors in 2008, in which the Standard & Poor’s 500 Index lost more than –2.9% over the course of 27 individual trading days.

Figure 2. Interest rates rarely evolve as expected: U.S. bonds

Source: Vanguard.
In addition to the “magnitude differences,” an additional challenge for stock investors is that, unlike bonds, in which a decline in prices leads to higher (nominal) yield—as shown in Figure 1—there is not so direct a relationship for stocks. This is because the yields and price/earnings (P/E) valuations in the stock market are driven by earnings as well as prices. In other words, two metrics are at work instead of one. In short, price declines do not automatically imply that earnings won’t decline as well, leading to valuations during or after a bear market that may not improve, as witnessed during the previous two bear markets.

Despite today’s lower outlook for bonds, not all bonds are alike

Although the current low level of interest rates cannot predict their future course, it does tell us that the possibility of realizing a loss in higher-quality bonds in the short term has rarely been higher. Today’s low yields mean that even a small increase in interest rates may result in price declines that exceed the income that bonds generate. That said, it is important for investors to recognize that not all

Figure 3. Stocks contain more risk than bonds (selected periods, January 1927–May 2013)

<table>
<thead>
<tr>
<th></th>
<th>Using rolling 12-month data</th>
<th>Using calendar-year data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. stocks</td>
<td>U.S. bonds</td>
</tr>
<tr>
<td>Annualized 12-month return</td>
<td>10.2%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Percentage of negative 12-month returns</td>
<td>26.4%</td>
<td>15.1%</td>
</tr>
<tr>
<td>Percentage of 12-month return that was less than –10%</td>
<td>13.8%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Percentage of 12-month return that was less than –20%</td>
<td>6.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Worst one-year return</td>
<td>–67.6%</td>
<td>–13.9%</td>
</tr>
</tbody>
</table>

Notes: When determining which index to use and for what period, we selected the index that, in our view, best represented the characteristics of the referenced market, given the information then available. Thus, U.S. stock market represented by Standard & Poor’s 500 from 2/1926 through 3/3/1957; S&P 500 Index from 3/4/1957 through 1974; Wilshire 5000 Index from 1975 through April 22, 2005; and MSCI US Broad Market Index thereafter. U.S. bond market represented by S&P High Grade Corporate Bond Index from 1926 through 1968; Citigroup High Grade Index from 1969 through 1972; Lehman Brothers U.S. Long Credit AA Index from 1973 through 1975; Barclays U.S. Aggregate Bond Index from 1976 through 2009; and Spliced Barclays U.S. Aggregate Float Adjusted Bond Index thereafter. Data assume portfolio was rebalanced monthly. Data through May 2013.

Source: Vanguard.

7 For example, the bear market from March 2000 through September 2002 saw the S&P 500 Index’s P/E ratio actually increase at the end of 2001, before finally falling to the levels that preceded the market peak. And more recently, over the course of the October 2007 through February 2009 bear market, earnings and prices each declined a similar amount, resulting in P/E valuations that remained stable throughout much of the bear market.

Mitigating bond risk by moving to cash

We recognize that bond investors facing the prospect of rising rates might naturally be inclined to either shorten duration or move into cash. Such a strategy, however, comes with several potential concerns. Davis et al. (2010) noted the inherent risks to this approach in the event the yield curve experiences a “bear flattening,” meaning short-term rates rise whereas longer-term rates remain anchored. In addition, investors selling bonds for cash will experience an opportunity cost in the form of lower yield while they wait for the anticipated rise in rates. The longer the wait, the greater the sacrifice in yield. Finally, because cash has historically offered a meager real return, those investors employing such a strategy would then need to correctly time their exit. This is because, historically, cash investments have tended to underperform both stocks and bonds following a given rise in interest rates in both nominal and real returns.
bonds are alike in terms of their sensitivity to interest rate changes. Some of the more dire pronouncements regarding losses in bonds reflect the experience an investor might realize in more interest-rate-sensitive bonds with very long durations.

Figure 4 illustrates this point by extending Figure 1’s analysis to include the hypothetical impact of a one-time 3-percentage-point increase in interest rates on a $100 investment in a long-term bond portfolio versus a broadly diversified total U.S. bond portfolio. In both cases, the one-time increase in interest rates results in a loss in year one, with the largest losses realized in the long-term bond portfolio (which is more highly sensitive to changes in interest rates). The losses in the long-term bond portfolio in year one are sizable, conform to the common definition of a bear market in equities, and would require eight years to recover. Meanwhile the broadly diversified bond portfolio, which is more similar to the bond exposure of the “average” investor, realizes a −12.9% loss in year one and recovers all losses by the end of year four. This analysis is not meant to dismiss a loss of this magnitude as insignificant or to rule out the possibility of an even larger loss. Indeed, a −12.9% loss would exceed that of any 12-month decline that a diversified U.S. bond investor has realized since September 1974. This example is designed, rather, to illustrate how over time, a diversified long-term investor can recover losses realized during a sharp spike in interest rates, and that the losses realized during this period are likely to be smaller in magnitude than that of a typical bear market in equities.

The current low level of interest rates has focused investors’ attention almost exclusively on interest rate risk. A more complete view of risk recognizes that bond prices are influenced by more than just unexpected changes in interest rates, and can also
be affected by unexpected changes in inflation expectations, credit fundamentals, market liquidity, sovereign risk developments, and other factors. Portfolio construction that is driven solely by an interest rate forecast may expose investors to unintended outcomes and higher levels of volatility. Figure 5 compares the performance of a variety of bonds with that of equities during the 2007–2009 global financial crisis (blue bars) and the subsequent equity market recovery (gold). Some of the more popular substitutes for U.S. Treasuries, like emerging-market debt, high-yield bonds, and even corporate bonds periodically exhibit return patterns that are far more similar to those of equities than bonds.⁸ Although long-term U.S. Treasuries have much higher volatility and price sensitivity to changes in interest rates, they have historically helped to mitigate equity market volatility in a flight to quality.

Your total portfolio matters most, not just the bonds within it

Although, going forward, the risk of loss in bonds in the short term has rarely been higher, what should matter most to investors who are diversified in stocks and bonds is the return of their total portfolio, not just the return of the bonds within it. For a diversified investor, the main source of risk and return over the long term is equities, while the role of bonds is to narrow the dispersion of potential returns. This point is demonstrated in Figure 6, which presents simulated nominal return distributions for March 2013–March 2022 for four hypothetical portfolios ranging from more conservative to more aggressive.

Notes: Returns for U.S. stocks and international stocks represent price returns; returns for bonds represent total returns. U.S. stocks represented by MSCI US Broad Market Index; international stocks represented by MSCI World Index ex USA; emerging-market bonds represented by JPMorgan Global Emerging Markets Index; high-yield bonds represented by Barclays U.S. High Yield Bond Index; corporate bonds represented by Barclays U.S. Corporate Investment Grade Bond Index; U.S. bonds represented by Barclays U.S. Aggregate Bond Index; and Treasury bonds represented by Barclays U.S. Treasury Bond Index. Source: Vanguard.

8 For more on the dynamic nature of correlations, see Philips, Walker, and Kinniry (2012).
Despite a muted return outlook and a greater risk of loss from bonds, these simulations illustrate that over a ten-year holding period the expected risk of loss in a balanced portfolio actually decreases as the allocation to high-quality bonds increases. The first portfolio shown in Figure 6, with an allocation of 20% stocks/80% bonds, would likely avoid a negative return over the ten years and would have a relatively narrow distribution of expected returns, though it is also likely to realize modest nominal returns. Comparing this potential outcome with those of the other portfolios in the figure with larger allocations to equities makes clear that equities, not bonds, increase both the probability of realizing a loss and the dispersion of returns.9

\textbf{Conclusion}

The implications of this paper’s analysis are clear: (1) For a majority of diversified, long-term investors, a potential bond bear market should not be viewed with the same level of apprehension as a potential equity bear market. Indeed, even the worst 12-month period for the U.S. bond market historically saw a little more than just one-fifth the losses of the worst 12-month period for the U.S. equity market; (2) If a bond bear market were to occur, investors would be able to somewhat offset price declines with higher nominal yields and potentially higher subsequent nominal returns; (3) Accurately predicting how interest rates will change is very difficult, and greater economic uncertainty argues for more fixed income diversification, not less; (4) Diversified fixed income

9 For more on Vanguard’s outlook on balanced portfolio returns, see Davis, Aliaga-Díaz, and Patterson (2013).
exposure remains a prudent complement to equities. Such a strategy may help to protect against losses similar either to the historical declines of longer-duration bond portfolios when interest rates have risen, or to the level of decreases similar to those experienced by lower-quality bond portfolios when equity markets have declined; and (5) Although the potential for negative returns in the short term for high-quality bonds has never been higher, over long-term holding periods we expect bonds to continue to reduce the risk of loss for balanced investors. Even when interest rates rise, what ultimately matters most for loss-averse investors is the return of their total portfolio, not just the returns of the bond portion of their portfolio.

References

Appendix. About the Vanguard Capital Markets Model

The Vanguard Capital Markets Model (VCMM) is a proprietary financial simulation tool developed and maintained by Vanguard’s Investment Strategy Group. The VCMM uses a statistical analysis of historical data for interest rates, inflation, and other risk factors for global equities, fixed income, and commodity markets to generate forward-looking distributions of expected long-term returns.

The VCMM is grounded in the empirical view that the returns of various asset classes reflect the compensation investors receive for bearing different types of systematic risk (or beta). Using a long span of historical monthly data, the VCMM estimates a dynamic statistical relationship among global risk factors and asset returns. Based on these calculations, the model uses regression-based Monte Carlo simulation methods to project relationships in the future. By explicitly accounting for important initial market conditions when generating its return distributions, the VCMM framework departs fundamentally from more basic Monte Carlo simulation techniques found in certain financial software.

The primary value of the VCMM is in its application to analyzing potential client portfolios. VCMM asset-class forecasts—comprising distributions of expected returns, volatilities, and correlations—are key to the evaluation of potential downside risks, various risk–return trade-offs, and diversification benefits of various asset classes. Although central tendencies are generated in any return distribution, Vanguard stresses that focusing on the full range of potential outcomes for the assets considered, such as the data presented in this paper, is the most effective way to use VCMM output.

The VCMM seeks to represent the uncertainty in the forecast by generating a wide range of potential outcomes. It is important to recognize that the VCMM does not impose “normality” on the return distributions but, rather, is influenced by the so-called fat tails and skewness in the empirical distribution of modeled asset-class returns. Within the range of outcomes, individual experiences can be quite different, underscoring the varied nature of potential future paths.
The case studies and examples in this report are designed for illustrative purposes only. These case studies and examples do not depict actual performance, are calculated with the benefit of hindsight, and may not take into account material quantitative and qualitative factors that would impact an investor’s investment decisions. The performance of a fund group average is not an exact representation of any particular investment as you cannot invest directly in a fund group average. The performance of the fund group average reflects the reinvestment of distributions and dividends but does not take into account sales, redemption, distribution or optional charges or income taxes payable by any unitholder that would have reduced returns. Any security, fund, index, portfolio or market sector mentioned in this report was done so for illustrative purposes only. No representation is made regarding the advisability of investing in third-party products that utilize the indices mentioned herein.

This information has been compiled from proprietary and non-proprietary sources believed to be reliable, but no representation or warranty, express or implied, is made by The Vanguard Group, Inc., its subsidiaries or affiliates, or any other person (collectively “The Vanguard Group”) as to its accuracy, completeness, timeliness or reliability. The Vanguard Group takes no responsibility for any errors and omissions contained herein and accepts no liability whatsoever for any loss arising from any use of, or reliance on, this report.

The views and opinions of the individual strategists are as of the original publication date, are subject to change and may not necessarily represent the views of Vanguard Investments Canada Inc. The individual strategists may not necessarily update or supplement their views and opinions whether as a result of new information, changing circumstances, future events or otherwise.

No implied or express recommendation, offer, or solicitation to buy or sell any ETFs or to adopt any particular investment or portfolio strategy is made in this material. The views expressed in this report should not be construed as investment, legal or tax advice. This information is not tailored to the particular objectives, needs, restrictions or circumstances of your clients or prospective investors and thus, it should not be used as the basis of any specific investment recommendation for your clients or prospective investors.

The views and opinions of the individual strategists are as of the original publication date, are subject to change and may not necessarily represent the views of Vanguard Investments Canada Inc. The individual strategists may not necessarily update or supplement their views and opinions whether as a result of new information, changing circumstances, future events or otherwise.

No implied or express recommendation, offer, or solicitation to buy or sell any ETFs or to adopt any particular investment or portfolio strategy is made in this material. The views expressed in this report should not be construed as investment, legal or tax advice. This information is not tailored to the particular objectives, needs, restrictions or circumstances of your clients or prospective investors and thus, it should not be used as the basis of any specific investment recommendation for your clients or prospective investors.

Not For Public Distribution: Vanguard Investments Canada Inc. issues this report to Financial Advisors for informational and educational purposes only. Vanguard Investments Canada Inc. accepts responsibility for the contents subject to the terms and conditions stated herein. All references in this report to “Vanguard” are to our parent company The Vanguard Group, Inc. This report does not necessarily represent any product or service by Vanguard Investments Canada Inc. It should be noted that it is written in the context of the U.S. market and contains data and analysis specific to the U.S. This report was originally published by The Vanguard Group, Inc. in July 2013. The first date of use by Vanguard Investments Canada Inc. is September 2013.

Commissions, management fees and expenses all may be associated with the Vanguard ETFs™. Investment objectives, risks, fees, expenses, and other important information are contained in the prospectus; read it before investing. Copies are available from Vanguard Investments Canada Inc. at www.vanguardcanada.ca. ETFs are not guaranteed, their values change frequently, and past performance may not be repeated.

Connect with Vanguard™ > vanguardcanada.ca

© 2013 Vanguard Investments Canada Inc.
All rights reserved.
ICRROL00 C72013
CFA® is a trademark owned by CFA Institute.